Vertically Integrated CMOS Active Pixel Sensors for Tracking Applications in HEP Experiments

D. Passer(1,2), L. Servoli(1), S. Meroli(1), D. Magalotti(1), P. Placidi(1,2), A. Marras(3)

1) Istituto Nazionale di Fisica Nucleare, via Pascoli 1, 06123 Perugia, Italy.
2) D.I.E.I, Università di Perugia, via Duranti 93, 06125 Perugia, Italy.
3) Deutsches Elektronen-Synchrotron, Hamburg, Germany.

Introduction

✓ In this work we propose an innovative all-in-one detector featuring multiple, stacked, fully-functional CMOS Active Pixel Sensor layers, aiming at:
 - momentum measurement (impact point and trajectory) with a single detector;
 - low material detector (reduced multiple scattering issues).
✓ Perspective advantages for particle tracking / vertex detectors:
 - high granularity – high spatial resolution;
 - separation of sensor, analog read-out electronics, A/D conversion layers (increased fill-factor, performance).
✓ A first chip prototype has been fabricated within a multi-project run - monol, featuring a 130nm CMOS 3D Chartered/Tezzaron technology, featuring a first chip prototype has been fabricated within a multi-project run - monol, aiming at:
 - large single separation of sensor, analog read-out electronics, A/D conversion IR, UV, VIS laser with pixel, back-side detector;
 - illumination measurement (impact point and trajectory) with a detector (reduced multiple scattering issues).

Optical Workbench – Characterization with Laser

✓ IR, UV, VIS laser with μ-focusing and μ-positioning capabilities.

Significantly different responses for spots that hit the pixel sensitive area with respect to spots crossing in between pixels - potential warning for effective fill-factor / efficiency.

Characterization with X-rays (40 kV / 90 μA - Fe or Cu fluorescence)

Monolayer clusters quantified spatial differences

Conclusions

✓ First functional characterization of 3D monolithically stacked Active Pixel Sensors layers fabricated in Chartered/Tezzaron 130nm 3D technology for particle tracking purposes.
✓ Good communications between bottom and top tiers (contacts only at the periphery – PADS; redundant bondpoints scheme).
✓ Both tiers are fully functional – different test structures and matrix structures (5x5, 16x16, small vs. large photodiodes) have been characterized with focused laser.
✓ Noise analysis and X-rays calibrations with Fe and Cu fluorescence.
✓ Charged particle characterization with 3 MeV proton beam to estimate charge collection region thickness.
✓ Coincidence responses between bottom and top matrices have been obtained with laser stimuli and 3 MeV proton beams.
✓ Misalignment between top and bottom tiers has been found in both cases and it is compatible with CT chip measurements.

References

- RAPS04 3D structures: Large photodiode.signal with respect to spots crossing in between pixels - effective fill-factor / efficiency.
- Mono-hit clusters quantified spatial differences.