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Chapter 1.  

Interaction of radiation with matter 

Radiation is detected by its interaction in matter. Every detection system has the same structure: it starts 

with the interaction of the radiation with the detection medium; interaction generates signal that is read-out 

and usually recorded. These interaction processes depend on both the type and the energy of the incoming 

particles.  

Physical phenomena allowing detection often involve soft electrons or photons, or atomic and molecular 

excitations. The fundamental mechanism on which radiation detectors are based is the dissipation of a 

fraction of the incoming radiation energy inside the detecting material. The transferred energy spreads 

among excited states, which are capable of generating carriers, e.g. electrons-holes in semiconductors, ion 

pairs in gaseous devices, photons in scintillating media. Read-out elements process these carriers (e.g. 

front-end electronics in semiconductor detectors). Hence, the required radiation information, such as 

momentum, energy and velocity, is obtained. This is the reason why the analysis and the development of 

silicon detectors needs an extensive knowledge of the physics that describe the radiation interaction with 

matter. Following will be briefly addressed an overview of basic concepts. 

1.1 Passage of charged massive particles through matter 

A fast relativistic charged particle traversing matter loses energy in discrete amounts in independent and 

stochastic single collisions. It interacts with the electrons and nuclei of atoms. The two major effects that 

characterize the passage of a charged particle through a thickness of material are an energy loss by the 

particle and a deflection of the same from its incident direction. The interaction mechanism varies with the 

energy, the mass and the charge of the incoming particle and the characteristics of the target too. In the 

following, we will focus on the particles that have mass. The interaction mechanisms are essentially: 
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1. Inelastic collisions with the atomic electrons of the material; 

2. Elastic scattering from nuclei; 

3. Nuclear reactions; 

4. Emission of Cherenkov radiation; 

5. Bremsstrahlung. 

 

Inelastic collisions with orbital electrons are almost exclusively responsible for the energy loss of heavy 

particle in matter. In these collisions the energy passes from the particle to the atom causing an ionization or 

an excitation. For light charged particles, i.e. electrons and positrons, there are two main processes 

contributing to the continuous energy loss: ionization and bremsstrahlung. The bremsstrahlung process is 

inversely proportional to the squared mass of the incident particle, thus it substantially accounts for 

radiation losses only for electrons. At electron energies above a few tens of MeV, bremsstrahlung 

dominates completely other processes [1.1, 1.2]. 

1.1.1 Cross section 

The main interaction mechanism between a charged particle and the crossed material is the collision. 

Mainly the collisions occur with the atomic electrons of the crossed medium, rarely with the nuclei. In all 

cases, the collisions cause the transfer of an amount of energy from the incident particle to the target and a 

deflection of the same. On the other hand the struck atom goes in an excited state and, if the energy is large 

enough, the hit electron can be detached from its atom creating an ion (primary ionization). If this electron 

reaches an energy enough large, can be itself a cause for ionization (secondary ionization). In this case the 

secondary electron is referred as δ-ray.  

A collision between two bodies does not occur as a contact between their mass but as the effect of the 

electromagnetic interaction between the charged particles. In this scenario is clear how a particle can even 

interact with electron far from itself (i.e. distant collision) and the definition of the collision process is a 

complicate problem to solve.  

The quantity characterizing the collision process is the cross section. Considering a beam of particles with a 

uniform distribution and F particles per unit of time impinging on a target particle. If we define the average 

number of particle Ns scattered into the solid angle dΩ in the unit of time, we can define the differential 

cross section as: 




 d

dN

F
E

d

d s1
),(


        (1.1) 

The total cross section will be the integral over the entire solid angle: 
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This quantity has the dimension of an area and is considered as the section normal to the beam direction 

outside of which the particle is not deflected. However, despite this definition, the cross section is just a 

measure of the interaction’s probability: the larger is the quantity, the greater is the probability to interact. 

The cross section definition is used not only for collisions but also for other kind of interactions. 

1.1.2 Mean energy loss for massive particles 

The collisions are casual, of course, but their number per macroscopic path length is generally large. This is 

why average quantities are generally used. One of the most relevant quantity is the mean energy loss per 

unit length, often called stopping power. Many theories were developed during the first half of the twentieth 

century aiming at characterizing this quantity. Hans Bethe, Bloch and other authors, around 1932, were the 

first to describe correctly the quantum-mechanical calculation with the formula: 
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with: 

2πNare
2mec

2= 0.1535 MeVcm2/g β: v/c of incident particle  

re: electron radius (2.817 x 10-13 cm) ρ: density of absorbing material 

Me: electron mass γ: 1/√1 − 𝛽2 

Na: Avogadro’s number δ: density correction 

Z: atomic number of absorbing material C: shell correction 

A: atomic weight of absorbing material I: mean excitation potential 

z: charge of incident particle Wmax: maximum energy transferable in a single collision 

 

where: 

22

22
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121
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





       (1.4) 

with s = me/M and η = βγ. 

The mean excitation energy I depends by the orbital frequency of the absorbing material; no precise 

formulas exist to calculate that value. However values of I for several material were deduced from 

measurements [1.3]. The last two terms in the parentheses of Eq. (1.3) are the density and the shell 
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corrections. Bethe-Bloch inserted them in the original formulation to enhance the prediction of the formula 

at certain range compared to the experimental results. The density correction takes into account the effect of 

the electric field produced by incoming particles and becomes more evident at high velocity. Instead, the 

shell correction is noticeable when the velocity of incident particle is comparable to the orbital velocity of 

the bound electrons of the target material. At this low energy some other complicated effects come into play 

and the Bethe-Bloch formula breaks down. When the velocity is comparable with the speed of orbital 

electrons of the target material the energy loss reaches a maximum depending on the sign of the charge 

(Barkas effect) and for lower energy drops sharply. At higher energy (that means higher velocity) dE/dx is 

dominated by the 1/β2 factor and decreases until β ≅ 0.96c where a minimum is reached. Particles with this 

energy are usually defined “minimum ionizing particle” (MIP).  

Increasing the energy, the losses do not increase so much due to the density effect (Fermi plateau) until the 

radiative components, such as the Cherenkov radiation and Bremsstrahlung, start to be relevant. The 

Cherenkov radiation arises when a charged particle in a medium moves faster than the speed of light in that 

same medium (βc>c/n, with n: index of refraction): in such case an electromagnetic shock wave is created, 

just as an aircraft that moves faster than sound.  

Especially for light particles, such as electrons or positrons at very high energy, the Bremsstrahlung 

emission represents the main energy loss mechanism. The deflection and the deceleration of the particle due 

to the interaction with the nuclei of the target cause the emission of photons; the lighter is the particle, the 

higher is the atomic number of target material and the greater is this effect. While ionization loss rates rise 

logarithmically with energy, Bremsstrahlung losses rise linearly and dominate at high energy (just only 

above few tens of MeV in most material for electrons). Figure 1.1 shows the mean energy loss (also known 

as stopping power) for muons that traverse a copper target in the range of few hundreds of keV to tens of 

TeV. 
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Figure 1.1 Stopping power for positive muons in Copper [1.4]  

 

1.1.3  Correction to Bethe-Bloch for electrons and positrons 

Electrons or positrons needs particular consideration. First, their small mass implies the possibility of a 

large deflection due to a single collision; moreover the collisions are between identical particles, so that the 

calculation must take into account their indistinguishability. As result, the maximum transferable energy in 

a single collision becomes: 

2/max eTW           (1.5) 

with Te: kinetic energy of the incident particle, and the Bethe-Bloch formula is rearranged as: 
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where suffix “+” means positrons and “-” means electrons. 

1.2 Energy straggling 

So far, in this chapter, we talked about energy loss mainly referring to the mean energy loss suffered by 

charged particles when passing through a thickness of matter. 

The amount of energy loss is a stochastic quantity with two sources of variations: the amount of energy 

transferred in a single collision and the actual number of collisions. The number of collisions fluctuates 

according to the Poisson law, i.e. for N collisions the number of collisions varies as √N. The relative 

variation of the collision number is inversely proportional to √N, so in the limit of very thick absorbers, the 

fluctuations in the energy loss due to the number of collisions vanish. However, for a finite thickness 

medium, the actual value of the collision number fluctuates. The distribution of the energy loss is called the 

straggling function and only for a thick layer it has a nearly Gaussian form. In general, the distribution is 

non-symmetric, skewed towards high values, with a long tail in the direction of high values of energy 

depositions. The probability of individual interactions with large amounts of energy transferred is strongly 

reduced, which implies the mean value of the distribution higher than the most probable one. Theoretically, 

the calculation of the energy loss distribution for a given thickness is a difficult mathematical problem and 

is generally divided into two cases: thick absorbers and thin absorbers. 

1.2.1 Thick absorber 

For thick absorber the number of collisions along the path of incoming particles is large. If we assume that 

the energy lost in each collision is not so large to alter the velocity of incident particle, the overall sum of 

all losses will be the sum of a large number of random variable with the same probability distribution. For 

the central limit theorem a sum like that approaches to the Gaussian distribution [1.5]: 

 
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with x: thickness of absorber, Δ: energy loss, ‹Δ›: mean energy loss and  

x
A

Zz
2

2
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When the thickness of the absorber is very large, the assumption that the velocity does not change along the 

path becomes invalid.  

 

Figure 1.2 Typical Bragg curve showing the variation of stopping power as a function of the penetration depth [1.1]. 

 

Figure 1.1 shows clearly that when a particle slows down in matter, its rate of energy loss change as its 

kinetic energy changes. In particular, below the MIP condition, the more the particle slow down, the more it 

releases energy and the more it slows down. Accordingly, when the target is large enough, the particle stops 

completely. Figure 1.2 shows an example of how the stopping power varies along the path of a particle 

beam until it stops completely; this kind of curves are known with the name of Bragg curves. 

1.2.2 Thin absorber 

In contrast to the thick absorber case, the distribution for thin absorbers, where the number of collisions N 

is too small for the Central Limit Theorem to hold, is extremely complicated to calculate.  

This is because of the possibility of large energy transfers in a single collision that adds a long tail to the 

high energy side of the energy loss distribution, giving it a skewed and asymmetric form. Figure 1.3 

illustrates this general shape. The position of the maximum of the distribution function (Δp) and the full 

width at half maximum (w) schematically characterize such a shape. Note that the mean energy loss no 

longer corresponds to the peak but is displaced because of the high energy tail. 
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Figure 1.3 Straggling functions in silicon for 500 MeV pions, normalized to unity at the most probable value.  

Theoretical calculations of this distribution have been carried out by Landau and Vavilov [1.6, 1.7]; these 

solutions have a different region of applicability and the discriminating parameter is the ratio k = ‹Δ›/Wm.  

Landau solved this problem for k ≤ 0.01 making the assumptions that: 

 

1. The maximum energy transfer is infinite Wm=∞; 

2. The electron binding energy in a collision is negligible, in other words the electrons involved in 

collisions are treated as free and the distant collision is ignored; 

3. The particle velocity remains approximately the same; 

4. Taking only the first term of Eq. (2.3), the mean energy loss ‹Δ› is approximated to the ξ parameter. 

 

He derived the expected energy loss distribution by solving an integral transport equation: 

.
0

]dEΔ)f(x,E)ΔW(E)[f(x,=Δ)(x,
dx

df



      (1.12) 

Here f(x,Δ) represents the distribution probability that the incident particle will lose an amount Δ of energy 

when crossing a layer of thickness x. This function is usually called straggling function. W(E)dE represents 

the probability per unit path length of a collision transferring energy E to an electron in the material. 

The function W(E)dE is not generally known but Landau was able to derive an approximate solution by 

using the free electron (Rutherford) cross section: 

2

1

Ex

ξ
=W(E)           (1.13) 

The Landau distribution is therefore given by  
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where CE: Euler constant equal to 0.5772.  

The Landau distribution, fL(Δ), is asymmetric with a tail extending to Wm with a maximum for λ=0.229  

and wL=4.018ξ. 

The energy loss corresponding to the maximum of the function fL(Δ) is the most probable energy loss [1.4]  
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Subsequently Vavilov derived an improved solution that takes in account the spin of the incident particle. 

For the collision cross section Vavilov used the form 


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
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MAXE
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Ex
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2

2
1
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       (1.18) 

Vavilov also demonstrated that his solution tends to the Landau function for k ≤ 0.01, region where ‹Δ› is 

approximated by ξ. For k > 10 the number of collisions is very large and, for the Central Limit Theorem, 

the Vavilov function coincides with a Gaussian distribution.  

Blunck and Leisegang [1.8], Shulek [1.9] and Bichsel [1.10] proposed further corrections to the theory 

taking into account that electrons in the material are not free.  

For solid-state materials, comparisons with experimental observations were made: while the most probable 

energy loss agrees rather well with the prediction of the theory, the width of the distribution is broader than 

expected and cannot be accounted for by electronic noise or imperfect resolution. The effect is particularly 

noticeable for very thin absorbers with thickness of a few hundred micrometers or even less [1.11]. The 

modified energy loss distribution was improved by using a modified cross section for taking into account 

the electron binding energy [1.12]. The new formula becomes:  



Chapter 2. Interaction of radiation with matter Energy straggling 

11 

 

 

 

dττ)Δ(x,f
σ

=Δ)f(x,

+

L














2

2

2
exp

2π

1




     (1.19) 

In other words, the experimentally observed energy spectrum is calculated by convolving the Landau 

distribution with a normal distribution of variance δ2. The results of the convolution is a broader 

distribution with a peak value usually increased by a small amount compared to the Landau theory. Shulek 

et al. [1.9] proposed the form 

i

e
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as an estimate of the effect, where Ii is the effective ionization potential of the i-th shell and where fi is the 

fraction of electrons in that shell. The resulting improved energy loss distribution has an overall value of w 

given approximately by: √𝑤𝐿
2 + 5.56 ∙ 𝛿2. 

As the material thickness decreases, δ2 becomes more and more the dominant term of w. Conversely, it is 

not expected to cause an additional broadening of the distribution at large thicknesses. 

1.2.3 Energy straggling for electrons and positrons 

As for the stopping power, the case of electrons or positrons implies a correction in the energy straggling 

formula. The impossibility to distinguish after collision the incoming electron and the electron of the struck 

atom, and the same mass of the impacting particles, imply the modification of some parameters as the cross 

section and other quantities from which the Landau-Vavilov solution derives. By the same procedure used 

by Landau but starting from the correct cross section, the energy straggling function becomes:   
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The suffix “+” or “-” means respectively the case of positrons or electrons, and EK is the kinetic energy of 

beam. 
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1.2.4 Energy for charge carrier generation in semiconductor material 

The energy W required to create an e-h pair in a semiconductor by a charged mass particle traversing the 

medium depends on the band gap energy Eg of the material and hence, although only slightly, on the 

temperature. The measurements of this quantity show a nearly linear dependence on the band gap energy, 

and the linear fit to the data obtained for different materials gives [1.13] 

 eVEEW gg  84.176.1)(       (1.23) 

The energy for charge carrier generation is always higher than the band gap energy due to the possible 

additional excitation of phonon and plasmon states. Phonon excitation transfers energy to the lattice, and 

the energy transferred appears finally as heat in the detector. The plasmon is the quantum of the valence 

electron density oscillations with a mean energy of 17eV for silicon. The valence electrons are those of the 

M-shell and they are only weakly bound to the atoms. Thus, they may be considered as a dense and nearly 

homogeneous density gas, i.e. plasma of negative charge carriers in the semiconductor material volume. 

The mean energy W to create an e-h pair has been calculated and measured in experiments including 

high energy charged particles and x-ray photons [1.13, 1.14]. The mean energy W required to create an e-h 

pair in silicon is W ≈ 3.68eV. 

1.2.5 Radiation length 

Energy loss due to radiation emission is negligible for heavy particles with masses significantly higher than 

the mass of the electron. However, a high energy electron or an high energy photon incident on matter 

initiates electromagnetic cascades by bremsstrahlung and e+e− pair production processes, respectively. The 

characteristic amount of matter traversed for these related interactions is called the radiation length X0, 

which is usually measured in g/cm−2. This is a scaling variable used for the probability of occurrence of 

bremsstrahlung or pair production, and for the variance of the angle of multiple Coulomb scattering. The 

average energy loss due to bremsstrahlung for an electron of energy E is related to the radiation length by 


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exp)(
1

X

t
EtEE
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     (1.24) 

where E0: initial energy of the incident particle. Thus, the radiation length is a mean distance over which a 

high energy electron losses all but 1/e of its energy by bremsstrahlung. The probability for a e+e− pair to be 

created by a high energy photon equals to 7/9 X0. The value of radiation length depends on the atomic 

number Z of the material. A useful approximation convenient for quick calculations of the radiation length 

is given by 
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and can be found tabulated by Y.S. Tsai [1.15] 

Eq. (2.25) is a heuristic expression providing 2.5% agreement with more accurate and advanced 

estimations. The radiation length for silicon is X0 ≈ 9.36 ρg/cm−2. The radiation length in mixtures or 

compounds of materials having different properties is calculated as a weighted mean of contributions from 

each constituent. 

1.3 Multiple Coulomb scattering 

In addition to inelastic collisions with the atomic electrons, particles passing through matter suffer repeated 

elastic Coulomb scattering from nuclei although with a smaller probability. Considering that usually nuclei 

have mass greater than the incoming particle, the energy transfer is negligible but each scattering centre 

adds a small deviation to the incoming particle trajectory. Even if this deflection is small the sum of all the 

contribution adds a random component to the particle path which proceeds with a zig-zag path (see Figure 

1.4). As result, a beam after a thickness of material shown a divergence greater than the incoming one. 

Three situations can be considered: 

1. Single scattering. When the thickness is extremely small and the probability to have more than one 

interaction is negligible. This situation is well described by the Rutherford formula: 
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2. Plural scattering. When the number of Coulomb scattering increases but remains under few tens of 

interactions. This is the most difficult case to deal with several works have been done by different 

authors (see [1.16] for further information). 

3. Multiple scattering. When the thickness increases and the number of interactions become high the 

angular dispersion can be modeled as Gaussian. 
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Figure 1.4 Effect of multiple Coulomb scattering. 

Referring to multiple scattering, that is the most common situation for silicon detectors, naming Θ the solid 

angle into which is concentrated the 98% of the beam after a thickness x of material, if we define 𝜃0 =

Θ/√2 as the projection of Θ on a plane, the angular dispersion can be calculated by the relation: 

  000 /ln038.01/
6.13

XxXxz
cp




      (1.27) 

where p: momentum and X0: radiation length. 

1.4 The interaction of photons 

The behavior of photons in matter is completely different from that of charged particles. In particular, the 

photon’s lack of an electric charge makes impossible inelastic collisions with atomic electrons, very 

common for charged particles. For this kind of radiation the most important mechanism of interaction are: 

 

1. Photoelectric effect; 

2. Compton and Rayleigh scattering; 

3. Pair production. 

 

As consequence of such kind of interactions, a photon interacting with a target disappears completely from 

the incident beam. Moreover, due to the smallest cross section of all this kind of reactions, x-ray or γ-ray 

are much more penetrating than charged particles. The attenuation of the incident beam is exponential with 

the thickness of the absorbing medium and is expressed by the following relation: 
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)exp()( 0 lxIxI          (1.28) 

where μl: linear attenuation coefficient, I0: incident beam intensity and x: thickness. The following relation 

links the linear attenuation coefficient to the cumulative cross section: 

totAl            (1.29) 

where ηA: number of atoms per unit of mass and σtot: total cross section. The total or cumulative cross 

section σtot is the sum of all the cross sections of the interactions mentioned above. Figure 1.5 shows a plot 

of this quantity with the different components highlighted. 

  

Figure 1.5 Cross sections of photons in Carbon (a) and Lead (b) in barns/atom. 

In photoelectric absorption, a photon disappears being absorbed by an atomic electron. The process results 

in ionization by subsequent ejection of the electron from the atom. The energy of the liberated electron is 

the difference between the photon energy and the energy needed to extract the electron from the atom, i.e. 

the binding energy of the electron. The recoil momentum is absorbed by the nucleus to which the ejected 

electron was bound. If the resulting photoelectron has sufficiently enough kinetic energy, it may be a source 

of a secondary ionization and, in the case of the semiconductor material, it may create further e-h pairs. If 

the electron does not leave the detector, the deposited energy corresponds to the energy possessed by the 

incident photon. When the energy required to create in the substrate a single e-h pair is known, the 

photoelectric effect allows calibrating the gain of the detector chained with its read-out system.  

The range R of the electron having the kinetic energy E is of the order of some micrometers, as given by the 

follow equation [1.17]:  
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   5.13108.40][ keVEmR        (1.30) 

Thus the cloud of generated charge is confined close to the photon absorption point. Normally there may be 

escaping photons, which can leave the detector volume, leading to a minor amount of energy deposited. 

These photons are actually the fluorescence photons emitted by de-exciting atoms. Atoms emit photons of 

fluorescence radiation after the ejection of a deep shell (K, L) electron. The incident photon creates a 

vacancy in the shell that can be filled by an outer orbital electron, giving rise to the emission of the 

characteristic x-rays photons of the fluorescence radiation. The missing energy conveyed by the escape 

photons causes escape peaks in the measured energy spectrum.  

Photon interaction coefficient for photoelectric absorption depends strongly on the atomic number of the 

absorbing material. The relevant cross section increases roughly as Z3. For silicon, the photoelectric effect is 

the dominant process for photon energies below 100keV. 

The Compton scattering instead involves the free electrons. Inside matter the electrons are bound to an 

atom; however, if the photon energy is high with respect to the binding energy, this latter energy can be 

ignored and the electrons are treated as essentially free. When Compton scattering occurs, the electron is 

scattered away in conjunction with a new photon with lower energy than the incoming one. In Rayleigh 

scattering, the photons interact with the whole atom. The only effect of this interaction is a deflection of the 

incoming photon; it does not participate to the absorption, making this effect negligible for most purposes.  

At very high energy, another effect becomes relevant: the pair production. In this process, the photon 

interacts with an electron or a nucleus producing a positron-electron pair. The photon must have at least an 

energy of 1.022MeV to produce the pair. Figure 1.5, with knuc and ke, shows the two components of the pair 

production cross section, respectively for the interaction with nuclei or electrons. Another possible 

interaction, but usually negligible compared to the former, is the Photonuclear reaction; in this case the 

photon interact directly with the nucleus. Figure 1.5 shows the related cross section in dotted line (σg.d.r.). 

The above cross section in barns/atom (1barn = 10-24 cm2, approximately the section of an uranium nucleus) 

expresses the probability of an interaction. A more suitable quantity, often used to characterize the 

absorption of a photon shower, is the mass attenuation coefficient. The mass attenuation coefficient is 

defined as: 
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        (1.31) 

with ρ: density of the material.  
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Chapter 2.  

Precision physics measurements  

with silicon Pixel Detectors 

In the future, the requirements for particle tracking systems will be even more stringent, in particular in 

terms of low material budget [2.1]. The reduction of the detector thickness decreases the signal rise time, 

increases the radiation resistance and reduces the material budget and the associated multiple scattering 

effects.

Therefore it is important to investigate the energy loss distribution f(Δ) caused by the passage of ionizing 

particles through thin layers of matter. To accomplish the f(Δ) measurement, the charge generated by 

ionizing particles crossing a silicon layer of known thickness is collected and measured. To perform a 

comprehensive study it is needed a large number of detectors, each one with different thickness,. This 

procedure is intrinsically time-consuming and very difficult to accomplish, especially for small 

thicknesses. In this chapter a new method to accomplish the f(Δ) measurement for several silicon's 

thicknesses relying only on one CMOS pixel sensor in a grazing angle configuration has been developed 

[2.2]. 

2.1 Energy loss distribution in thin silicon layers 

In grazing angle configuration [2.3], the passage of a charged particle is detected by several pixels 

pertaining to the single planar detector by forming a track. The amount of silicon crossed by the ionizing 

particle is a function of the particle incident angle (R=d/tan(α)), allowing to perform the f(Δ) 

characterization at various thicknesses just selecting tracks of different length (detected by the sensor). 

The measurement were performed by using the commercial Micron MT9V011 sensor featuring 5.6x5.6 

μm2 pixel size and few micrometers epitaxial layer. 
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The only region used in the investigation of the f(Δ) is the one ranging from 1 μm to 3.5 μm in depth (the 

B region in Figure 2.1), where all the generated electron-hole pairs are collected. Because the generation 

point in this region is close to the photodiodes, the charge diffusion is limited and the charge sharing 

among pixels belonging to the same track is negligible. 

 

Figure 2.1 CCE profile of the MT9V011, sensor used for the energy loss investigation 

Tracks with different pixel length are used, knowing that for a longer track there will be more pixels in the 

B region and then more crossed pixels at maximum Charge Collection Efficiency. It is then possible to 

build an energy loss distribution for several silicon thicknesses just selecting segments with a different 

number of pixels 

In the present study, we got energy loss distributions for 100 MeV electrons and 12 GeV protons. Due to 

the particle energy used in our investigation, the value of k will be always less than 0.01. Consequently, 

Eq. (1.19), where a Gaussian function convolves a Landau distribution, well fits the observed energy loss 

distribution. The standard deviation σtot of the Gaussian part should take into account also the detector and 

electronic noise σnoise : 

2

2

noisetot δ+σ=σ 2

         (2.1) 

Therefore, we fitted the experimental energy loss distributions for each momentum and type of particle 

with a Landau convolved with a Gaussian featuring three free fitting parameters: σtot, ξ and LΔp.  

Figure 2.2 shows the energy loss distributions for 12 GeV protons and 100 MeV electrons passing through 

5.6 μm of silicon. 
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Figure 2.2 Energy loss distribution for (a) 12GeV protons and (b) 100MeV passing through 5.6 μm of silicon with 

convolved function fit and Landau contribution of this fit. 

Superimposed on the experimental data are the energy loss distribution fitted using a convolved function 

according the Eq. (1.19) and the Landau distribution extracted from this fit. Both figures show the 

importance of electronic binding effects, which tends to broaden the energy loss distribution.  

The Δp is equal to 0.966 ± 0.035 keV for the 12 GeV protons and 1.018 ± 0.050 keV for 100MeV 

electrons, corresponding to 262 ± 10 and 277 ± 14 electron-hole pairs.  

The extracted value for w is 1.04 ± 0.012 keV for the protons and 1.12 ± 0.018 keV for the electrons while 

the value for δ2 is 0.27 ± 0.18 keV for the protons and 0.31 ± 0.23 keV for the electrons. 

The shift of the most probable energy loss of the straggling function (Δp) respect to LΔp is about 12%. The 

Landau fit fails to model correctly these experimental data because the theory of Landau assumes that the 

typical energy loss in an absorber should be larger compared to the binding energy of the most tightly 

bound electron, a condition that does not occur with this thickness. In fact for the validity of the Landau 

approach, ξ should be much more than the atomic binding energy, which means x/β2 >> 100 μm. 

Varying the thickness of the silicon absorber, the distributions change noticeably. Figure 2.3(a) shows 

several energy loss distributions obtained for 12 GeV protons in silicon absorbers of different thickness. 

For each distribution, the fit made according Eq. (1.19) reproduces well the experimental data. 
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Figure 2.3 (a) Energy loss distributions with fits for 12GeV protons passing through several silicon thicknesses. 

(b) Fit to energy loss per unit length distribution for 12 GeV protons passing through several silicon thicknesses. 

To better understand the Δp dependence from the thickness of crossed silicon, Figure 2.3(b) shows the fits 

obtained from several distributions of the energy loss per unit length of crossed silicon. The position of the 

peak of the normalized distributions tends to increase with the silicon thickness, while the distribution 

broadens for thinner layers. In fact, for small values of k, the Landau width wL is proportional to the 

thickness while the width of the convolution Gaussian δ2 is proportional to √(thickness). 

Figure 2.4 plots the Δp/x as a function of the silicon thickness respectively for 12 GeV protons and 

100 MeV electrons. The circles represent the measured values Δp/x with their error bars coming from the 

peak error of the energy loss fit, while the line represents a logarithmic fit performed on these data 

according the Eq. (1.19). We observed a very good agreement in all the studied range (5.6 to 120 μm). 

  

Figure 2.4 Energy loss for (a) 12 GeV protons and (b) 100 MeV electrons passing through several silicon thickness 
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In Table 2.1, we compare the results for specific values of silicon thickness with theoretical predictions 

and other experimental measurements. The data obtained with the grazing angle method, using 12 GeV 

proton (βγ = 12.3), are compared with experimental data reported in [2.4] obtained using pions having a βγ 

equal to 14, and with theoretical data reported in [2.5] obtained by the convolution method for highly 

relativistic particles. 

 

Table 2.1. Comparison between our results obtained with 12 GeV protons and other experimental and theoretical results.  

x [ɛm] 32 51 100 
    

Δp [keV] this work 7.04 11.81 24.75 

Δp [keV] theoretical [2.5] 7.092 11.840 25.283 

Δp [keV] experimental [2.4] 6.91 11.79 25.96 

Δp/x [e-h/μm] this work 60 63 67 
    

w [keV] this work 4.98 7.22 13.17 

w [keV] theoretical [2.5] 5.172 7.201 12.929 

w [keV] experimental [2.4] 5.26 7.25 13.29 
    

σnoise [keV] this work 0.14 0.16 0.23 

σnoise [keV] experimental [2.4] 0.78 0.73 2.0 

 

 

The general observation is that the results obtained through the grazing angle method closely follow the 

experimental data and agree with the predicted values within the experimental errors. The small Gaussian 

error σnoise due to the electronic and sensor characteristics allows a precision in the experimental 

measurements significantly better than the other methods. 
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Conclusion 

We gave a wide introduction on the phenomena modelling the interaction between radiation and matter.  

We also explained a new method based on a grazing angle technique to measure the energy loss 

distribution of particle crossing thin silicon layers. By using this method, we characterized precisely the 

energy loss distribution for different thicknesses of silicon absorbers.  

Only one sensor with sufficient segmentation was required (e.g. commercial Active Pixel Sensor). We 

checked the validity of the method with the expected theoretical distribution and experimental data.  

We also demonstrated the broadening of the energy loss distribution caused by the increasing influence of 

the resonance collisions on the straggling function. The low noise of the sensor and its associated 

electronics allowed a significant reduction of the experimental errors on the energy loss measurements. 

The grazing angle method allowed extracting that value using medium energy charged particle beams, 

instead of the high-energy beams available in few places in the world.  

 


